Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts
نویسندگان
چکیده
Hypoxia of local tissue occurs during the scar formation; however, the degree of ischemia and hypoxia in the central areas of keloids is more serious than those in normal scars. Hypoxia-induced factor (HIF), is one of the main cellular responses to hypoxia, allowing cells to adapt to low-oxygen conditions. We investigated the correlation among hypoxia, transforming growth factor-β1/Smad signaling and collagen deposition. Hypoxia up-regulated TGF-β1, Smad2/3, p-Smad2/3, Smad4, and total collagen in both normal and keloid fibroblasts via HIF-1α, which was attenuated by HIF-1α inhibition, but TβRII levels were not significantly altered. Silencing Smad4 under hypoxia decreased the mRNA and protein levels of HIF-1α, suggesting up-regulated Smad4 may also plays a role in promoting HIF-1α. Finally, we examined the role of the TGF-β1/Smad pathway in collagen deposition. When TβRII was inhibited by ITD-1 under hypoxic conditions, p-Smad2/3 levels and collagen deposition decreased. When inhibited TβRII by siRNA under normoxia, the levels of p-Smad2/3, Smad4 and collagen deposition also decreased. This result demonstrated that hypoxia promoted TGF-β1/Smad signaling via HIF-1α and that both HIF-1α and the TGF-β1/Smad signaling promotes collagen deposition in hypoxia, which is an important mechanism of keloid formation.
منابع مشابه
Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression.
Increasing evidence suggests that chronic kidney disease may develop following acute kidney injury and that this may be due, in part, to hypoxia-related phenomena. Hypoxia-inducible factor (HIF) is stabilized in hypoxic conditions and regulates multiple signaling pathways that could contribute to renal fibrosis. As transforming growth factor (TGF)-β is known to mediate renal fibrosis, we propos...
متن کاملHypoxia drives the transition of human dermal fibroblasts to a myofibroblast-like phenotype via the TGF-β1/Smad3 pathway
Keloids, partially considered as benign tumors, are characterized by the overgrowth of fibrosis beyond the boundaries of the wound and are regulated mainly by transforming growth factor (TGF)-β1, which induces the transition of fibroblasts to myofibroblasts. Hypoxia is an important driving force in the development of lung and liver fibrosis by activating hypoxia inducible factor-1α and stimulat...
متن کاملHypoxia-inducible factor prolyl-hydroxylase-2 mediates transforming growth factor beta 1-induced epithelial-mesenchymal transition in renal tubular cells.
Transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in kidney epithelial cells plays a key role in renal tubulointerstitial fibrosis in chronic kidney diseases. As hypoxia-inducible factor (HIF)-1α is found to mediate TGF-β1-induced signaling pathway, we tested the hypothesis that HIF-1α and its upstream regulator prolyl hydroxylase domain-containing prote...
متن کاملOverexpression of RACK1 inhibits collagen synthesis in keloid fibroblasts via inhibition of transforming growth factor-β1/Smad signaling pathway.
Keloids are benign skin tumors characterized by collagen accumulation and hyperproliferation of fibroblasts. The receptor for activated C-kinase 1 (RACK1) was involved in liver fibrosis. However, the role of RACK1 in dermal fibrosis keloids is still unclear. Therefore, in this study, we investigated the effects of RACK1 on keloid fibroblasts (KFs) and transforming growth factor-β1 (TGF-β1)-indu...
متن کاملComparison of a Suggested Model of Fibrosis in Human Dermal Fibroblasts by Serum from Systemic Sclerosis Patients with Transforming Growth Factor β Induced in vitro Model
Systemic sclerosis (SSc) is a chronic autoimmune disease, featuring fibrosis in multiple organs. The serum from SSc patients contain inflammatory mediators, contributing to SSc pathogenesis and could be used to develop cell culture models. Here, we compared the fibrotic effects of serum samples from SSc patients with TGFβ1 on human dermal fibroblasts (HDFs). HDF cells were cultured in four diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018